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ABSTRACT

Budding of filoviruses, arenaviruses, and rhabdoviruses is facilitated by subversion of host proteins, such as Nedd4 E3 ubiquitin
ligase, by viral PPxY late (L) budding domains expressed within the matrix proteins of these RNA viruses. As L domains are im-
portant for budding and are highly conserved in a wide array of RNA viruses, they represent potential broad-spectrum targets
for the development of antiviral drugs. To identify potential competitive blockers, we used the known Nedd4 WW domain-PPxY
interaction interface as the basis of an in silico screen. Using PPxY-dependent budding of Marburg (MARV) VP40 virus-like par-
ticles (VLPs) as our model system, we identified small-molecule hit 1 that inhibited Nedd4-PPxY interaction and PPxY-depen-
dent budding. This lead candidate was subsequently improved with additional structure-activity relationship (SAR) analog test-
ing which enhanced antibudding activity into the nanomolar range. Current lead compounds 4 and 5 exhibit on-target effects by
specifically blocking the MARV VP40 PPxY-host Nedd4 interaction and subsequent PPxY-dependent egress of MARV VP40
VLPs. In addition, lead compounds 4 and 5 exhibited antibudding activity against Ebola and Lassa fever VLPs, as well as vesicu-
lar stomatitis and rabies viruses (VSV and RABV, respectively). These data provide target validation and suggest that inhibition
of the PPxY-Nedd4 interaction can serve as the basis for the development of a novel class of broad-spectrum, host-oriented anti-
virals targeting viruses that depend on a functional PPxY L domain for efficient egress.

IMPORTANCE

There is an urgent and unmet need for the development of safe and effective therapeutics against biodefense and high-priority
pathogens, including filoviruses (Ebola and Marburg) and arenaviruses (e.g., Lassa and Junin) which cause severe hemorrhagic
fever syndromes with high mortality rates. We along with others have established that efficient budding of filoviruses, arenavi-
ruses, and other viruses is critically dependent on the subversion of host proteins. As disruption of virus budding would prevent
virus dissemination, identification of small-molecule compounds that block these critical viral-host interactions should effec-
tively block disease progression and transmission. Our findings provide validation for targeting these virus-host interactions as
we have identified lead inhibitors with broad-spectrum antiviral activity. In addition, such inhibitors might prove useful for
newly emerging RNA viruses for which no therapeutics would be available.

Filoviruses (Ebola [EBOV] and Marburg [MARV]), arenavi-
ruses (e.g., Lassa fever [LFV] and Junin [JUNV]), and rhabdo-

viruses (e.g., vesicular stomatitis virus [VSV] and rabies virus
[RABV]) are enveloped RNA viruses which can cause severe dis-
ease in humans and animals. For example, filovirus and arenavirus
infections can result in hemorrhagic syndromes with high mortal-
ity rates in humans, and, as such, these viruses are classified as
NIAID category A priority pathogens (1–4). There are currently
no available vaccines or therapeutics to control infection and
transmission of EBOV, MARV, LFV, JUNV, and several RABV-
related lyssaviruses of phylogroups 2 and 3. In an effort to identify
and develop antiviral therapeutics with broad-spectrum activity
against these RNA viruses, we focused on the viral matrix proteins
and, more specifically, on their interactions with host proteins
during the virus life cycle.

The matrix proteins of filoviruses (VP40), arenaviruses (Z),
and rhabdoviruses (M) are highly abundant and play key roles in
promoting virus assembly and egress (5–7). For example, inde-
pendent expression of EBOV or MARV VP40 (eVP40 or mVP40,
respectively) leads to the production of virus-like particles (VLPs)

that accurately mimic the morphology and budding characteris-
tics of infectious virus (5–7). A common feature of these various
viral matrix proteins is the presence of one or more motifs referred
to as late (L) budding domains. The conservation of L domains
within the matrix proteins of filoviruses, arenaviruses, rhabdovi-
ruses, paramyxoviruses, and retroviruses suggests that they are
generally important and required for efficient RNA virus budding
(8). Viral L domains recruit host ESCRT (endosomal sorting com-
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plex required for transport) complexes to mediate efficient virus-
cell separation (or “pinching-off”) and consist of core consensus
amino acid motifs such as PPxY, P(T/S)AP, YxxL, or FPIV (where
x is any amino acid) (for a review, see reference 8). Indeed, a
plethora of studies have demonstrated the importance of viral
L-domain– host interactions for efficient virus egress and spread
(for a review, see references 6 to 13). For example, the PPxY motif
mediates interactions with WW domains within mammalian E3
ubiquitin ligase Nedd4 to facilitate virus egress (14–31). Nedd4 is
associated with the ESCRT machinery and mono-ubiquitinates
ESCRT proteins as well as viral matrix proteins (7, 14–17, 20, 21,
23, 24, 28, 29, 32–40). A functional PPxY motif is present in the

matrix proteins of EBOV, MARV, VSV, RABV, LFV, and other
viruses (14–31). Thus, recruitment of host proteins such as Nedd4
by viral L domains represents a broad-spectrum target for the
identification and advancement of antiviral drugs hypothesized to
dampen virus egress from infected cells, thereby reducing virus
dissemination and disease progression.

In this report, we employed an in silico screening strategy to
identify small molecules that competitively block the interaction
between viral PPxY L domains and the WW domain(s) of host
Nedd4. Using structure-activity relationship (SAR) analog test-
ing, we dissected initial hit 1 into two fragments (Fig. 1, red dis-
section line in compound 1) and then searched, acquired, and

FIG 1 Rationale and strategy for identifying PPxY budding inhibitors. The diagram shows arenavirus, filovirus, and rhabdovirus virions budding efficiently from
the plasma membrane in the absence of inhibitors (A) or remaining tethered to the plasma membrane as a result of PPxY inhibitors blocking the interaction
between host Nedd4 and the PPxY L domains present in the Z, VP40, and M viral matrix proteins (B). (C) Flow chart showing an in silico screen and SAR analysis
to identify inhibitors of the viral PPxY-host Nedd4 interaction and PPxY-mediated budding. The in silico screen involved computational docking with Auto-
Dock, version 4.0, energy minimization using CHARMM with the MMFF force field, and ranking with Accelrys LigScore2 of 4.8 million drug-like compounds
from the ZINC database. The top 20 scoring compounds were tested, as indicated, leading to the identification of our initial lead compound 1. To understand how
the structure of compound 1 affected its activity, the molecule was dissected into two fragments (see disconnection point in red), and 20 commercially available
compounds having these two fragment substructures (10 compounds from each) were evaluated. Two compounds (2 and 3), one from each substructure search,
were found to be more potent than compound 1. Further substructure searches of commercial databases were performed and led to the acquisition and testing
of an additional 10 compounds (5 structurally related to compound 2 and 5 related to compound 3). Compound 4 showed improved potency over SAR analog
2, and compound 5 showed improved potency over SAR analog 3. Compound 6 is a structurally related inactive negative control.
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tested commercially available compounds possessing these two
substructures in our VLP and bimolecular complementation
(BiMC) assays. This analysis led to the identification of two po-
tential lead series, exemplified by the two current lead compounds
4 and 5, that possess PPxY-dependent antibudding activity in the
nanomolar range against VLPs and infectious virus. It is impor-
tant to note that the PPxY motif is the sole functional L domain
within MARV VP40, whereas EBOV VP40 contains functional
and overlapping PPxY- and PTAP-type L domains (14, 19, 29,
41–46). Also budding of both VSV and RABV in our cell culture
system is driven solely by single PPxY L domains within their M
proteins (10, 15, 47–50). Here, we show that lead compounds 4
and 5 can inhibit egress of VLPs formed by MARV VP40, EBOV
VP40, and LFV Z and PPxY-dependent budding of VSV and
RABV in a dose-dependent manner. In addition, results using a
BiMC approach further support our conclusion that the mecha-
nism of action of compounds 4 and 5 involves competitive disrup-
tion of the viral PPxY-host Nedd4 interaction, leading to a de-
crease in VLP and/or virus egress. These findings serve as target
validation and suggest that the viral PPxY-host WW domain in-
teraction can be exploited to eventually obtain broad-spectrum
antiviral compounds that can be evaluated further in a detailed
investigational new drug (IND)-directed manner.

MATERIALS AND METHODS
Cell lines, viruses, and antibodies. HEK293T, BHK-21, and BSR cells
were maintained in Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with 10% fetal calf serum (FCS), and penicillin (100 U/ml)/
streptomycin (100 �g/ml) at 37°C in a humidified 5% CO2 incubator.
Anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH; ab8245) and
anti-HSP70 antibodies (BRM-22; ab6535) were purchased from Abcam
(Cambridge, MA); mouse anti-Flag monoclonal antibody (F1804-

200UG) and mouse anti-�-actin (A1978-200UL) were obtained from
Sigma-Aldrich (St. Louis, MO); polyclonal anti-EBOV VP40 antibody
was generated by ProSci Incorporated (Poway, CA); anti-VSV-M mono-
clonal antibody 23H12 was kindly provided by D. Lyles (Winston-Salem,
NC); anti-RABV-M is a rabbit polyclonal serum raised against an N-ter-
minal peptide (amino acids [aa] 4 to 19) from SAD B19; anti-LFV-Z is a
rabbit polyclonal serum kindly provided by S. Urata (Nagasaki, Japan)
(39). VSV wild type (VSV-WT; Indiana strain), VSV recombinant M40,
and a VSV mutant in which the PPxY motif was changed to four alanines
(VSV-PY�A4) were propagated in BHK-21 cells and have been described
previously (22, 41, 51). RABV (SPBN) is derived from the SAD B19 vac-
cine strain and has been described previously (52).

Test compounds. All compounds were �95% pure, as determined
independently at the Fox Chase Chemical Diversity Center (FCCDC) us-
ing liquid chromatography-mass spectrometry (LC/MS) (Micromass ZQ
mass spectrometer with a Waters 2695 high-performance liquid chro-
matograph [HPLC] with a 996 diode array detector); compounds were
dissolved in dimethyl sulfoxide (DMSO) at concentrations of 10 or 100
mM and stored at �20°C. Compound 1 (Z106187460) was identified
from the ZINC database and purchased from ChemDiv (San Diego,
CA). Commercial analogs of compound 1, namely, compounds 2
(Amb207302), 3 (Amb21795400), 4 (Amb123203), 5 (Amb21795397),
and 6 (Amb21639324), were purchased from Ambinter (Orléans,
France).

Plasmids. pCAGGS-based plasmids expressing EBOV (Zaire) VP40
and Flag-tagged MARV (Musoke) VP40 have been described previously
(7, 19, 31, 53–58). Carboxyl-yellow fluorescent protein (CYFP)-mVP40
has been described previously (59). Plasmid NYFP-Nedd4 was generated
by amplifying the human Nedd4 open reading frame (ORF) using stan-
dard PCR techniques and joining it to the N-terminal YFP (NYFP) frag-
ment. The NYFP-Nedd4 fusion gene was cloned into the SmaI and NheI
sites of the pCAGGS vector. The plasmid expressing LFV-Z WT protein
(pCLFV-Z) was kindly provided by S. Urata (Nagasaki, Japan) (39). A

FIG 2 Effect of 1 on PPxY-dependent budding of MARV VP40 VLPs and infectious VSV. (A) HEK293T cells transfected with pCAGGS vector (lane 1) or mVP40
(lanes 2 to 6) were treated with DMSO alone (lanes 1 and 2) or with the indicated concentrations of compound 1 (lanes 3 to 6). Cells and VLPs were harvested
at 24 h posttransfection, and a representative Western blot to detect mVP40 is shown. A Western blot control for �-actin in cells is shown. Data in the bar graph
showing mVP40 levels (ImageJ software) in VLPs from samples receiving 0 and 20 �M compound 1 represent the average from three independent experiments.
(B) HEK293T cells were infected with VSV-WT or VSV-PY�A4 at an MOI of 0.1 in the absence (DMSO alone) or presence of 10 �M compound 1. Supernatants
were harvested at 8 h postinfection, and virions were quantified by standard plaque assay on BHK-21 cells performed in triplicate and graphed as PFU/ml. *, P �
0.005; ns, not significant. Infected cell extracts were harvested at 8 h postinfection, and both VSV M and cellular actin were detected by Western blotting.
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pCAGGS-based plasmid expressing LFV-Z-�PPPY was constructed by
standard PCR and cloning techniques.

Bimolecular complementation assay. A BiMC assay in HEK293T
cells was performed as described previously (31, 59, 60). Briefly, HEK293T
cells were cotransfected with CYFP-mVP40 and NYFP-Nedd4 for 4 to 5 h,
and the cells were then treated with concentrations of compound 4, 5, or
6 as indicated in the figures for an additional 24 h. Cell nuclei were stained
with NucBlue Live Cell Stain reagent (Life Technologies) according to the
manufacturer’s instructions. Cells were examined by fluorescence mi-
croscopy and quantified using MetaMorph software (Molecular Devices,
CA). Briefly, we used MetaMorph software to mark all regions of YFP
fluorescence above a set threshold and quantified this threshold area as a
percentage of the entire area of the field. This method indicates the change
in overall fluorescence area, regardless of whether it is due to a change in
the number of positive cells or to the amount per cell. We also used a
similar measurement for area of 4=,6=-diamidino-2-phenylindole (DAPI)
stain to ensure that cell number remained roughly the same throughout.
In a second set of analyses, we used the cell scoring module of MetaMorph
to count the total number of nuclei (taken to also be the total number of
cells) and the number of cells positive for YFP fluorescence (i.e., above a
set threshold). This is a measure only of percent positive cells and not
necessarily of overall amounts of fluorescence per cell.

VLP budding assay and Western blotting. VLP budding assays and
Western blotting were performed as described previously (14, 19, 56, 57).

Virus budding and titration. To evaluate the effect of compounds on
the release of VSV-WT, recombinant VSV-M40, or mutant VSV-PY�A4,
HEK293T cells in collagen-coated six-well plates were infected with the
appropriate virus at a multiplicity of infection (MOI) of 0.1 for 1 h. The
inoculum was removed, and cells were washed three times with phos-
phate-buffered saline (PBS) and then incubated in serum-free Opti-MEM
in the presence of DMSO alone (mock) or the appropriate compounds at
the concentrations indicated in the figures. Virions from the culture me-
dium were harvested at 8 h postinfection (p.i.) and centrifuged at 2,500
rpm for 10 min at 4°C to remove cellular debris. Cells were lysed in radio-
immunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl, pH 8, 150
mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, and pro-
tease inhibitor). VSV-M or M40 protein in cell extracts was analyzed by
SDS-PAGE and Western blotting with anti-VSV-M monoclonal antibody
23H12, followed by anti-mouse IgG horseradish peroxidase (HRP)-con-
jugated secondary antibody. For virus titration, BHK-21 cells in six-well
plates were washed one time with PBS and inoculated with 200 �l of
10-fold serial dilutions of virus in serum-free DMEM in triplicate and
incubated for 1 h. The inoculum was removed, and the cells were washed
three times with PBS and incubated with 2.0 ml of Eagle’s minimal essen-
tial medium (MEM) containing 5% FBS and 1% methylcellulose at 37°C
for 36 to 48 h until plaques were observed. Cells were washed two times
with PBS, fixed with methanol, and stained with 1% crystal violet solu-
tion.

FIG 3 Effect of compounds 2 and 3 on budding of mVP40 and eVP40 VLPs. (A and B) HEK293T cells transfected with mVP40 were treated with DMSO alone
(lanes 1) or with the indicated concentrations of compound 2 (A, lanes 2 to 5) or compound 3 (B, lanes 2 to 4). Cells and VLPs were harvested at 24 h
posttransfection, and mVP40 was detected by Western blotting. A Western blot control for cellular GAPDH in cells is shown. (C and D) HEK293T cells
transfected with eVP40 were treated with DMSO alone (lanes 1) or with the indicated concentrations of compound 2 (C, lanes 2 to 5) or compound 3 (D, lanes
2 to 6). Cells and VLPs were harvested at 24 h posttransfection, and eVP40 was detected by Western blotting. A Western blot control for cellular GAPDH in cells
is shown. (E) HEK293T cells transfected with mVP40 were treated with DMSO alone (lane 1) or with the indicated concentrations of compound 6 (lanes 2 to 6)
as a negative control. Cells and VLPs were harvested at 24 h posttransfection, and mVP40 was detected by Western blotting. Numbers in parentheses were
determined using ImageJ software (NIH), and controls were set at 100%.
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To evaluate the effect of compounds on the release of RABV,
HEK293T cells were infected with SPBN at an MOI of 0.1 in the absence or
presence of the probe, and cells were incubated at 34°C. Virus-containing
supernatants were harvested at the indicated times postinfection, and ti-
ters were determined in duplicate on BSR cells. RABV-M protein was
detected by Western blotting of HEK293T cells infected with SPBN at an
MOI of 10 for 36 h.

Structure/activity studies. Compound 1 was identified via an in silico
screen involving computational docking of over 4.8 million drug-like
compounds from the ZINC database into the published structure be-
tween the viral PPxY motif and the host WW domain of Nedd4 (61, 62)
with AutoDock, version 4.0, followed by energy minimization using
CHARMM with the MMFF force field and ranking with Accelrys Lig-
Score2 (63–66). Experimentally testing the top 20 scoring compounds led
to the identification of initial hit 1 as the most active compound. Com-
pound 1 was then dissected conceptually into two fragments, as shown by
the red dissection line in Fig. 1, in order to use the two fragments in
substructure searches (SSS) of commercial databases to find new SAR
analogs to evaluate. More specifically, the 2-piperidin-3-yl-benzothiazole
fragment (left side) and 1-acetyl-3-(2,2,2-trifluoroethyl)-urea fragment
(right side) were used for substructure searching (SSS) of the Ambinter
(Orléans, France) commercial compound database. Ambinter was chosen
as the compound vendor because of its large library of compounds con-
taining both substructure fragments of compound 1. Ten commercially
available compounds (five from each fragment substructure) were pur-
chased and evaluated. This led to more potent compounds, namely, con-
gener 2 obtained from SSS of the left side fragment and analog 3 from SSS

of the right side fragment. Structurally related inactive compound 6, used
as a negative control in later studies, also arose from this exercise (SSS
analog of the right-hand fragment of compound 1). Substructure/simi-
larity searching for analogs of compound 2 led to the acquisition and
testing of an additional two analogs of compound 2. One of these two was
compound 4, which proved to be more potent than compound 2. Sub-
structure/similarity searching for analogs of compound 3 led to the acqui-
sition and testing of an additional eight analogs of compound 3. While
several active analogs of compound 3 resulted from this exercise, com-
pound 5 stood out as the most potent, exceeding the potency of com-
pound 3.

Statistical analysis. Statistical analysis was determined using a one-
way analysis of variance (ANOVA) test.

RESULTS
Strategy to identify host-oriented inhibitors targeting viral
PPxY-host Nedd4 interactions. As mentioned above, subversion
of host Nedd4 E3 ubiquitin ligase by viral PPxY-type L domains
is important for efficient budding (virus-cell separation) of nu-
merous RNA viruses including filoviruses, arenaviruses, and rh-
abdoviruses (Fig. 1A). Small-molecule inhibitors that block this
virus-host interaction would be predicted to reduce virus-cell sep-
aration and virus spread by concomitantly increasing the number
of virions tethered to the plasma membrane (Fig. 1B). We sought
to identify such candidate small-molecule compounds by using an
in silico screening strategy (63–65) to probe the reported interac-

FIG 4 Compound 4 inhibits budding of mVP40 and eVP40 VLPs and blocks mVP40-Nedd4 protein-protein interaction. (A) HEK293T cells transfected with
mVP40 were treated with DMSO alone (lane 1) or with the indicated concentrations of compound 4 (lanes 2 to 4). Cells and VLPs were harvested at 24 h
posttransfection, and a representative Western blot for mVP40 is shown. Western blot controls for cellular GAPDH and HSP70 in cells are shown. The bar graph
represents the average levels of mVP40 VLPs from three independent experiments. *, P � 0.001. Numbers in parentheses were determined using ImageJ software
(NIH), and controls were set at 100%. (B) HEK293T cells transfected with eVP40 were treated with DMSO alone (lane 1) or with the indicated concentrations
of compound 4 (lanes 2 and 3). Cells and VLPs were harvested at 24 h posttransfection, and a representative Western blot for eVP40 is shown. Western blot
controls for cellular GAPDH and HSP70 in cells are shown. The bar graph represents the average levels of eVP40 VLPs from three independent experiments. *,
P � 0.005. Numbers in parentheses were determined using ImageJ software (NIH), and controls were set at 100%. (C) BiMC assay and representative images of
HEK293T cells coexpressing NYFP-Nedd4 and CYFP-mVP40 fusion proteins in the absence (DMSO alone) or presence of the indicated concentrations of
compound 4 or 6. The green signal represents an interaction between mVP40 and Nedd4, and cell nuclei were stained blue with NucBlue. Scale bar, 200 �m.
YFP-positive cells were quantified in triplicate using MetaMorph software.
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tion structure between the viral PPxY motif and the host WW
domain of Nedd4 (61, 62) (Fig. 1C). This led to the identification
of compound 1 as our initial hit. Structural analogs of compound
1 were then found by substructure searching of commercial data-
bases for compounds having the substructure fragments from
each side of the dissection line of compound 1 (Fig. 1C), and these
compounds were then purchased and evaluated in our assays. This
led to the identification of the more potent compounds 2 and 3.
Further SAR studies resulted in the discovery of our current most
potent lead inhibitors, compounds 4 and 5 (Fig. 1C).

Antibudding activity of initial hit 1. Compound 1 was tested
for its ability to block PPxY-dependent budding of MARV VP40
(mVP40) VLPs in a dose-dependent manner. Briefly, HEK293T
cells were transfected with pCAGGS vector alone (Fig. 2A, lane 1)
or an mVP40 expression plasmid in the absence (DMSO alone,
lane 2) or presence of the compound 1 at the concentrations in-
dicated on the figure (lanes 3 to 6). Compound 1 produced a
dose-dependent inhibition of mVP40 VLP formation with an ap-
proximate 5-fold decrease in VLP egress at a concentration of 20
�M compared to controls (Fig. 2A, VLPs, lanes 2 and 6, and bar
graph). Compound 1 had no effect on expression levels of mVP40
or actin in cells at all drug concentrations tested (Fig. 2A, cells,
lanes 1 to 6).

We next sought to determine whether compound 1 could in-
hibit budding of a PPxY-dependent virus from cell culture. We
took advantage of the fact that efficient egress of VSV is dependent
on a functional PPxY L domain within its M protein (15, 40, 47–
50). Briefly, HEK293T cells were infected with VSV-WT or a PPxY
mutant virus (VSV-PY�A4) in which the PPxY motif was
changed to four alanines, in the absence (DMSO alone) or pres-
ence of 10 �M compound 1. Cell extracts and virus-containing
supernatants were harvested at 8 h postinfection and analyzed for
levels of M protein by Western blotting and viral titers by plaque
assay, respectively (Fig. 2B). In the presence of 10 �M compound
1, budding of mutant VSV-PY�A4 was reduced by �2-fold,
whereas budding of VSV-WT was reduced significantly by ap-
proximately 4-fold (Fig. 2B). Compound 1 had no effect on ex-

pression levels of actin or VSV-M at a concentration of 10 �M, as
determined by Western blotting of infected cell extracts (Fig. 2B).

Antibudding activity of SAR analogs 2 and 3. Using the struc-
ture of compound 1 as our starting point, we performed SAR
analog testing to identify structurally related and progressively
more potent small-molecule inhibitors of budding. Toward this
end, we identified compounds 2 and 3 and tested their ability to
inhibit egress of both MARV and EBOV VP40 VLPs in a dose-
dependent manner (Fig. 3). Briefly, HEK293T cells were trans-
fected with plasmids expressing either mVP40 or eVP40 in the
absence (DMSO alone) or presence of compound 2 (Fig. 3A and
C) or 3 (Fig. 3B and D) at the concentrations indicated on the
figure. Both cell extracts and VLPs were harvested at 24 h post-
transfection, and levels of mVP40 and eVP40 were assessed by
Western blotting. Compound 2 inhibited egress of mVP40 VLPs
by 33- and 100-fold at concentrations of 20 �M and 40 �M, re-
spectively (Fig. 3A, VLPs, lanes 4 and 5) with a �2-fold effect on
the levels of mVP40 and host GAPDH in cell extracts (Fig. 3A,
cells, lanes 1 to 5). Compound 2 inhibited egress of eVP40 VLPs by
2.5- and 50-fold at concentrations of 20 �M and 40 �M, respec-
tively (Fig. 3C, VLPs, lanes 4 and 5) with a �2-fold effect on the
levels of eVP40 and host GAPDH in cell extracts (Fig. 3C, cells,
lanes 1 to 5). Relative to compound 2, compound 3 was far more
potent at inhibiting budding of both mVP40 and eVP40 VLPs.
Indeed, compound 3 inhibited egress of mVP40 VLPs by 10-,
100-, and 100-fold at concentrations of 1.0 �M, 10 �M, and 20
�M, respectively (Fig. 3B, VLPs, lanes 2 to 4), and inhibited egress
of eVP40 VLPs by �2-, 4-, and 20-fold at concentrations of 1.0
�M, 10 �M, and 20 �M, respectively (Fig. 3D, VLPs, lanes 4 to 6).
Compound 3 had no effect on expression levels of mVP40, eVP40,
or GAPDH in cell extracts at any concentration tested (Fig. 3B and
D, cells). Negative-control compound 6 served to validate the
specificity and antibudding activity of compounds 2 and 3 since
compound 6 showed no effect on either cell or VLP expression
levels of mVP40 at any concentration tested (Fig. 3E, lanes 1 to 6).

Antibudding activity of lead compounds 4 and 5. Continuing
SAR studies led to the identification of our most potent leads,

FIG 5 BiMC assay of VP40-Nedd4 interactions. BiMC assay and representative images of HEK293T cells expressing NYFP-Nedd4 alone or with CYFP-eVP40,
CYFP-eVP40-�PY/PY, CYFP-mVP40, or CYFP-mVP40-�PPPY are shown. The green signal represents an interaction between VP40 and Nedd4, and cell nuclei
were stained blue with DAPI. A Western blot control is shown for endogenous Nedd4 and exogenous NYFP-Nedd4.
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compounds 4 and 5. Compounds 4 and 5 were tested for their
ability to inhibit PPxY-dependent budding of both VLPs and
infectious virus from cell culture, as well as to competitively
block the interaction between mVP40 and host Nedd4 in live
mammalian cells using a BiMC approach. Briefly, HEK293T
cells were transfected with plasmids expressing either mVP40
or eVP40 in the absence (DMSO alone) or presence of com-
pound 4 (Fig. 4A and B) at the concentrations indicated on the
figure. Both cell extracts and VLPs were harvested at 24 h post-
transfection, and levels of mVP40 and eVP40 were assessed by
Western blotting and quantified. Compound 4 inhibited egress
of mVP40 VLPs by 33- and 100-fold at concentrations of 0.5
�M and 1.0 �M, respectively (Fig. 4A, VLPs, lanes 3 and 4, and
bar graph). Compound 4 inhibited egress of eVP40 VLPs by 3-
and 10-fold at concentrations of 0.5 �M and 1.0 �M, respec-
tively (Fig. 4B, VLPs, lanes 2 and 3, and bar graph). Compound
4 had no effect on expression levels of mVP40, GAPDH, or
HSP70 in cell extracts at all concentrations tested (Fig. 4A and
B, cells).

A BiMC assay was used to determine whether compound 4
could specifically block the protein-protein interaction between
mVP40 and host Nedd4 in a dose-dependent manner (Fig. 4C).
Briefly, the mechanistic basis of the BiMC assay involves the split-
ting of YFP into N- and C-terminal (NYFP and CYFP, respec-
tively) halves that are then joined to two proteins of interest
(mVP40 and Nedd4) (31, 58–60, 67). If mVP40 and Nedd4
interact when coexpressed in mammalian cells, then the N- and
C-terminal halves of YFP will come together to reconstitute a
functional YFP yielding a fluorescent signal. NYFP-Nedd4 and
CYFP-mVP40 were coexpressed in human HEK293T cells for 4 to
5 h, and then cells were treated with DMSO alone or with com-
pound 4 or 6 (as a negative control) at the concentrations of indi-
cated on the figure (Fig. 4C). At 24 h after transfection, cells were
examined for YFP fluorescence (Fig. 4C). Total cell counts based
on NucBlue staining indicated that equivalent numbers of cells
were present in all BiMC assay samples. YFP-positive cells were
detected in the presence of vehicle alone, indicating that this assay
is capable of detecting mVP40 interactions with host Nedd4

FIG 6 Compound 5 inhibits budding of mVP40 and eVP40 VLPs and blocks mVP40-Nedd4 protein-protein interaction. (A) HEK293T cells transfected with
mVP40 were treated with DMSO alone (lane 1) or with the indicated concentrations of compound 5 (lanes 2 to 4). Cells and VLPs were harvested at 24 h
posttransfection, and a representative Western blot for mVP40 is shown. Western blot controls for cellular GAPDH and HSP70 in cells are shown. The bar graph
represents the average levels of mVP40 VLPs from three independent experiments. *, P � 0.001. Numbers in parentheses were determined using ImageJ software
(NIH), and controls were set at 100%. (B) HEK293T cells transfected with eVP40 were treated with DMSO alone (lane 1) or with the indicated concentrations
of compound 5 (lanes 2 to 4). Cells and VLPs were harvested at 24 h posttransfection, and a representative Western blot for eVP40 is shown. Western blot controls
for cellular GAPDH and HSP70 in cells are shown. The bar graph represents the average levels of eVP40 VLPs from three independent experiments. *, P � 0.001.
Numbers in parentheses were determined using ImageJ software (NIH), and controls were set at 100%. (C) BiMC assay and representative images of HEK293T
cells coexpressing NYFP-Nedd4 and CYFP-mVP40 fusion proteins in the absence (DMSO alone) or presence of the indicated concentrations of compound 5.
The green signal represents an interaction between mVP40 and Nedd4, and cell nuclei were stained blue with NucBlue. Scale bar, 200 �m. YFP-positive cells were
quantified in triplicate using MetaMorph software.
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(Fig. 4C). Importantly, YFP-positive cells decreased by approxi-
mately 2- and 4-fold in the presence of 0.5 �M and 1.0 �M con-
centrations of compound 4, respectively, indicating that com-
pound 4 inhibits interactions between mVP40 and host Nedd4
(Fig. 4C). No such inhibition was observed in cells treated with a
10 �M or 20 �M concentration of compound 6, confirming the
specificity of the inhibitory activity observed for compound 4 (Fig.
4C). Expression of the NYFP-Nedd4 fusion protein in transfected
HEK293T cells was confirmed by Western blotting (Fig. 5), and
appropriate controls for BiMC assays were performed, including
expression of NYFP-Nedd4 alone, as well as coexpression of
NYFP-Nedd4 plus CYFP-eVP40-�PT/PY and NYFP-Nedd4 plus
CYFP-mVP40-�PPPY to confirm the specificity of the observed
Nedd4-VP40 interactions (Fig. 5).

Similar analyses were carried out with compound 5 (Fig. 6).
Compound 5 inhibited egress of mVP40 VLPs by 25-, 100-, and
100-fold at concentrations of 0.1 �M, 0.5 �M, and 1.0 �M,
respectively (Fig. 6A, VLPs, lanes 2 to 4, and bar graph). Com-
pound 5 inhibited egress of eVP40 VLPs by �2-, 3.3-, and
7-fold at concentrations of 0.1 �M, 0.5 �M, and 1.0 �M, re-
spectively (Fig. 6B, VLPs, lanes 2 to 4, and bar graph). Com-
pound 5 had no effect on expression levels of mVP40, eVP40,
GAPDH, or HSP70 in cell extracts at all concentrations tested
(Fig. 6A and B, cells). A BiMC assay was used to determine
whether compound 5 could specifically block the mVP40-
Nedd4 interaction in a dose-dependent manner (Fig. 6C).
Equivalent numbers of cells were present in all BiMC assay
samples as determined using MetaMorph software (see Mate-
rials and Methods). Indeed, the number of YFP-positive cells
decreased by approximately 2- and 3-fold in the presence of 0.1
�M and 0.5 �M concentrations of compound 5 compared to
those observed in the presence of vehicle alone as determined
using MetaMorph software to quantify YFP fluorescence
(Fig. 6C).

Compounds 4 and 5 inhibit VLP budding of PPxY-contain-
ing LFV-Z protein. The Z protein of LFV contains both a PPxY
and a PTAP motif. We along with others have shown that the
PPxY L-domain motif is important for efficient egress of LFV-Z
VLPs (Fig. 7A). For example, deletion of the PPxY motif resulted
in a 4-fold decrease in VLP production compared to that of WT
LFV-Z (Fig. 7A). Thus, we sought to test whether compounds 4
and 5 could inhibit budding of LFV-Z VLPs. Briefly, HEK293T
cells were transfected with plasmids expressing LFV-Z in the ab-
sence (DMSO alone) or presence of compound 4 (Fig. 7B) or 5
(Fig. 7C) at the concentrations indicated on the figure. Both cell
extracts and VLPs were harvested at 24 h posttransfection, and
levels of LFV-Z were assessed by Western blotting. Compound 4
inhibited egress of LFV-Z VLPs by �5-fold at a concentration of
0.5 �M and by �10-fold at a concentration of 1.0 �M (Fig. 7B,
VLPs). Similarly, compound 5 inhibited egress of LFV-Z VLPs by
approximately 2.5-, 5-, and �10-fold at concentrations of 0.1 �M,
0.5 �M, and 1.0 �M, respectively (Fig. 7C, VLPs). Compounds 4
and 5 had no effect on expression levels of LFV-Z or actin in cell
extracts at all concentrations tested (Fig. 7B and C, cells).

Effect of compounds 4 and 5 on budding of infectious VSV
and VSV recombinants. We next sought to determine whether
leads 4 and 5 possessed antibudding activity against infectious
viruses that depend on a functional PPxY L domain for efficient
egress. Toward this end, HEK293T cells were infected for 8 h at an
MOI of 0.1 with either VSV-WT (containing a single PPxY L do-

main), recombinant VSV-M40 (containing overlapping EBOV
PTAP and PPxY L domains), or VSV-PY�A4 (a PPxY mutant and
budding defective virus) in the absence (DMSO alone) or pres-
ence of compound 4 (Fig. 8A) or 5 (Fig. 8B) at the concentration
indicated on the figure. Compound 4 inhibited egress of VSV-WT
by �2-fold at 0.1 �M and by 20-fold at 0.5 �M without affecting
viral or host protein synthesis (Fig. 8A, left panel). Indeed, titers of
VSV-WT averaging 3.3 � 107 PFU/ml at 8 h postinfection were
significantly reduced to an average of 1.8 � 106 PFU/ml in the
presence of a 0.5 �M concentration of compound 4 (Fig. 8A, left
panel). Not surprisingly, compound 4 inhibited egress of VSV-
M40 to a lesser degree, i.e., by �2-fold at 0.1 �M and by approx-
imately 3-fold at 0.5 �M without affecting viral or host protein
synthesis (Fig. 8A, middle panel). As expected, compound 4 ex-
hibited no significant inhibition of VSV-PY�A4 budding at all
concentrations tested (Fig. 8A, right panel). Compound 5 inhib-
ited egress of VSV-WT by �2-fold at 0.1 �M and by 4-fold at 0.5
�M without affecting viral or host protein synthesis (Fig. 8B, left
panel). Compound 5 inhibited egress of VSV-M40 by 2-fold at 0.1
�M and by 6-fold at 0.5 �M without affecting viral or host protein
synthesis (Fig. 8B, middle panel). Lastly, budding of VSV-PY�A4

FIG 7 Compounds 4 and 5 inhibit budding of LFV-Z VLPs. (A) VLP budding
assay and Western blot demonstrating that the PPxY L-domain motif of
LFV-Z protein is important for efficient VLP egress from HEK293T cells. Bud-
ding of LFV-Z-�PPPY VLPs was reduced by 4-fold compared to that of LFV-
Z-WT. HEK293T cells transfected with LFV-Z-WT were treated with DMSO
alone (0), or with the indicated concentrations of compound 4 (B) or 5 (C).
Cells and VLPs were harvested at 24 h posttransfection, and LFV-Z-WT was
detected by Western blotting. Western blot loading controls for cellular actin
are shown. Numbers in parentheses were determined using ImageJ software
(NIH), and controls were set at 100%.
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was reduced by �2-fold in the presence of 0.1 �M and 0.5 �M
concentrations of 5 (Fig. 8B, right panel).

Effect of compounds 4 and 5 on budding of PPxY-containing
RABV. Since efficient budding of RABV is also dependent on a
single PPxY L domain within its M protein (13, 15, 22, 49, 68), we
sought to determine whether lead compounds 4 and 5 possessed
antibudding activity against infectious RABV in cell culture.
Briefly, HEK293T cells were infected with RABV SPBN at an MOI
of 0.1 in the absence (DMSO alone) or presence of compound 4 or
5 at the concentrations indicated on the figure, and virus-contain-
ing supernatants were harvested at 24 (data not shown), 36, and 72
h p.i., and titers were determined in duplicate by immunostaining

assay on BSR cells (Fig. 9A and B). Compound 4 reduced RABV
titers at 36 h postinfection in a dose-dependent manner by ap-
proximately 5- and 10-fold at 0.5 �M and 1.0 �M, respectively
(Fig. 9A). Compound 4 reduced RABV titers at 72 h postinfection
in a dose-dependent manner by approximately 10- and 50-fold at
0.5 �M and 1.0 �M, respectively (Fig. 9A). A similar dose-depen-
dent reduction in RABV titers of approximately 5- and 30-fold
was observed in the presence of compound 5 at 36 h postinfection
at 0.5 �M and 1.0 �M, respectively (Fig. 9B). Compound 5 re-
duced RABV titers at 72 h postinfection by approximately 40- and
80-fold at 0.5 and 1.0 �M, respectively (Fig. 9B). Equivalent
amounts of RABV-M were detected by Western blotting from cell

FIG 8 Compounds 4 and 5 inhibit egress of infectious VSV and VSV recombinants in a PPxY-dependent and dose-dependent manner. (A) HEK293T cells were
infected with VSV-WT, VSV-M40, or VSV-PY�A4 at an MOI of 0.1 in the absence (DMSO alone) or presence of 0.1 or 0.5 �M compound 4. Supernatants were
harvested at 8 h postinfection, and virions were quantified by standard plaque assay on BHK-21 cells performed in triplicate. **, P � 0.01; ns, not significant (as
determined by a one-way ANOVA test). Infected cell extracts were harvested at 8 h postinfection, and VSV-M, GAPDH, and HSP70 were detected by Western
blotting. (B) HEK293T cells were infected with VSV-WT, VSV-M40, or VSV-PY�A4 at an MOI of 0.1 in the absence (DMSO alone) or presence of 0.1 or 0.5 �M
compound 5. Supernatants were harvested at 8 h postinfection, and virions were quantified by standard plaque assay on BHK-21 cells performed in triplicate. **,
P � 0.01; *, P � 0.5. Infected cell extracts were harvested at 8 h postinfection, and VSV-M, GAPDH, and HSP70 were detected by Western blotting. Numbers in
parentheses were determined using ImageJ software (NIH), and controls were set at 100%.
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extracts receiving vehicle alone or compound 4 and 5 at concen-
trations indicated on the figure, suggesting that these inhibitors
did not adversely affect viral protein synthesis at the concentra-
tions tested (Fig. 9C).

Compounds 1, 4, and 5 are not cytotoxic. We wanted to de-
termine whether compounds 1, 4, and 5 were cytotoxic to
HEK293T cells under conditions used for transfection experi-
ments. MTT [3-(4,5-dimethylthiazol-2-yl)2 2,5-diphenyl tetrazo-
lium bromide] cell viability assays were performed on HEK293T
cells that were treated with DMSO alone or with compounds 1, 4,
and 5 at the concentrations indicated on the figure (Fig. 10). We
found that compounds 1, 4, and 5 were not cytotoxic to HEK293T
cells at the concentrations tested.

DISCUSSION

In this report, we validate the usefulness of an in silico approach
combined with functional VLP and virus budding assays to iden-
tify small molecules possessing potent antiviral activity. We tar-
geted the well-established viral PPxY-host Nedd4 interaction. By
inhibiting PPxY-dependent recruitment of host Nedd4, a percent-
age of mature virions will remain tethered to the plasma mem-
brane, unable to bud and spread efficiently to infect new cells (Fig.
1A and B).

Using iterative rounds of analog selection, we progressively
identified more potent structural analogs of our initial candidate,
leading to identification of our current top candidate inhibitors,

FIG 9 Compounds 4 and 5 inhibit egress of infectious RABV in cell culture. Bar graphs representing multistep growth of RABV in HEK293T cells in the absence
(DMSO alone) or presence of the indicated concentrations of compound 4 (A) or compound 5 (B). At the indicated time points, virus-containing supernatant
was harvested and titrated in duplicate on BSR cells. **, P � 0.01; *, P � 0.05. (C) Western blot analysis of RABV-infected HEK293T cells in the absence (DMSO
alone) or presence of the indicated concentrations of compounds 4 and 5. Cell extracts were harvested at 36 h p.i., and detection of RABV-M protein (24 kDa)
by Western blotting is shown.

FIG 10 MTT cell viability assays. MTT cell viability assays were performed on HEK293T cells that were treated with DMSO or the indicated concentrations of
compounds 1, 4, and 5 under conditions that mimicked those used for VLP transfection. Each concentration was tested in triplicate.
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compounds 4 and 5. Importantly, compounds 4 and 5 exhibited
broad-spectrum antibudding activity against filoviruses, arenavi-
rus, and rhabdovirus VLPs and/or virions with virtually no cyto-
toxicity by MTT assay (Fig. 10) at the concentrations tested. Our
findings suggest that compounds 4 and 5 competitively disrupt
the viral PPxY-host Nedd4 interaction. In support, compound 4
significantly inhibited egress of infectious VSV-WT (a PPxY-de-
pendent virus) by more than 1 log at a concentration of 0.5 �M yet
had no significant effect on egress of VSV-PY�A4 at the same
concentration (Fig. 8A). Our finding that compound 4 inhibited
budding of VSV-WT to levels comparable to those of VSV-
PY�A4 in the absence of drug strongly suggest that compound 4
specially targets the function of the PPxY motif. It should be noted
that we did observe a minimal unanticipated effect of compounds
1 and 5 on budding of VSV-PY�A4 (Fig. 2B and 8B). Since VSV-
PY�A4 is still a budding virus, albeit defective, and since we do
not yet know whether these compounds bind to the viral and/or
the host protein, it may be possible that these compounds hinder
other Nedd4 functions and/or interactions (e.g., with Tsg101) in
the cell that have a minimal and perhaps indirect impact on egress
of VSV-PY�A4. A second possibility is that at higher concentra-
tions, these compounds may simply exhibit off-target effects that
we have yet to identify.

The use of VSV recombinant M40 as a surrogate virus allowed
us to assess the antiviral activity of compounds 4 and 5 against a
biosafety level 2 (BSL-2) virus possessing the PPxY-type L-domain
motif originating from a BSL-4 pathogen (EBOV). Importantly,
compounds 4 and 5 also inhibited egress of infectious RABV by
�1 log at 72 h postinfection without any apparent inhibitory ef-
fect on viral protein synthesis (Fig. 9). This finding is of signifi-
cance since the replicative cycles and pathogenesis of VSV and
RABV are quite different, yet both viruses depend on a PPxY L
domain for efficient egress. Moreover, the results indicate that
these probes might prove useful for RABV-related lyssaviruses
such as Mokola virus, for which no vaccines or therapeutics cur-
rently exist. In addition to our budding assays, findings from our
BiMC analyses indicate that both compounds 4 and 5, but not 6,
can inhibit PPxY-dependent binding of MARV VP40 and Nedd4
in live mammalian cells in a dose-dependent manner (Fig. 4 and
6). Indeed, the fraction of positively fluorescing cells, as well as the
overall signal intensity, decreased from approximately 20% in the
absence of drug to approximately 3% in the presence of a 1.0 �M
concentration of compound 4 (Fig. 4).

To our knowledge, small molecules targeting the viral PPxY-
host Nedd4 interaction have not been reported; however, a num-
ber of previous studies have reported on antivirals targeting virus-
host interactions and/or budding of filoviruses, arenaviruses,
rhabdoviruses, and others (7, 9, 12, 31, 69–81). Host Tsg101 and
its recruitment by viral PTAP type L domains of RNA viruses have
been targeted for the development of antivirals in a number of
recent studies (7, 9, 31, 39, 71, 82–88). For example, Tavassoli et al.
(83) genetically identified cyclic peptides designed to block the
interaction between Tsg101 and the PTAP motif within the p6
region of HIV-1 Gag, whereas Liu et al. (31) used the in silico
approach, as described here, to identify a small-molecule inhibitor
of the interaction between Tsg101 and the PTAP motif within
EBOV VP40 to block VLP egress.

Although the concept of host-oriented therapeutics is of great
interest, its development still remains in its infancy. However, this
report, along with the earlier studies described above, help to il-

lustrate the power and validity of this concept. As these virus L-
domain– host interactions are conserved in a range of emerging
RNA viruses, we predict that they represent an Achilles heel in the
life cycle of these pathogens. Moreover, the chemical tractability
of these small-molecule compounds will allow us to rapidly un-
dertake structure-activity analyses to continue to develop and op-
timize these budding inhibitors. As shown here, iterative rounds
of selection successfully led to the identification of structural an-
alogs that exhibited enhanced potency and/or efficacy in blocking
PPxY-dependent egress of several RNA viruses. Since many of
these RNA viruses contain one or more L domains, it is tempting
to speculate that a combination of both PTAP and PPxY inhibitors
may have a synergistic effect, resulting in enhanced antiviral po-
tency. Importantly, the antiviral activity of compounds 4 and 5 as
well as other L-domain inhibitors against infectious BSL-4 patho-
gens both in vitro and in vivo remains to be determined. Never-
theless, studies presented here serve to validate our target and
position us to transition into a full drug discovery program of
study including evaluation of subsequent lead candidate inhibi-
tors in detailed IND-directed pharmacokinetic, pharmacody-
namic, and toxicity testing in vivo.
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